

Math Virtual Learning

Algebra 2A

Polynomial Synthetic Division

April 22, 2020

Lesson: Polynomial Synthetic Division

Learning Target:

LT D2 I can perform polynomial division (long and synthetic) and apply the remainder theorem.

LT D3 I can evaluate and compose polynomial functions.

Objective:

Students will be able to evaluate polynomials. Students will be able to apply the remainder theorem.

Warm Up

For today's warm up, try the practice problems below:

$$f(x) = 2x + 3$$

$$g(x) = 5x - 4$$

- 1. (f + g)(x)
- 2. (f g)(x)
- 3. (fg)(x)

Warm Up Answers

- 1. (f+g)(x) = 7x 1
- 2. (f g)(x) = -3x + 7
- 3. $(fg)(x) = 10x^2 + 7x 12$

Lesson

You will need to watch the two videos below:

Lesson

Things to remember about the remainder theorem:

- 1. Only works with when the divisor is a linear expression of the form *x-a*, with *a* being some number.
- 2. You can divide the polynomial using either long division or synthetic division.

Practice

Use synthetic division and the remainder theorem to evaluate each of these problems.

Find f (3) for the equation $f(x) = x^3 - 3x^2 + 2x + 5$

Find g (4) for the equation $g(x) = 2x^3 - 5x^2 + 3x - 4$

Find h (-1) for the equation $h(x) = x^4 - 4x^2 + 2x + 5$

Find q(0) for the equation $q(x) = 5x^4 - 3x^3 + 7x^2 + 2x + 8$

Find f (3) for the equation $f(x) = x^3 - 3x^2 + 2x + 5$

Check

3 | 1 - 3 | 2 | 5 |
$$f(3) = (3)^3 - 3(3)^2 + 2(3) + 5$$
 $+ 3 | 0 | 6 | = 27 - 27 + 6 + 6$

1 | 0 | 2 | 11 | $= 11$

remainfer

Answer: $f(3) = 11$

Solutions to Practice Problems

$$f(3) = 11$$

$$g(4) = 56$$

$$h(-1) = 0$$

$$q(0) = 8$$

Additional Resources

The Remainder Theorem

Remainder Theorem and Factor Theorem

Additional Practice

Khan Academy-Remainder theorem

Kuta-The Remainder Theorem